Spectral or Dynamic Constellations as Sound Sources in Maps
DOI:
https://doi.org/10.56294/piii2024276Keywords:
aesthetics, maps, music, sources, space, stereoAbstract
Research on musical aesthetic patterns on different decades of the second part of the last twentieth century allowed specific studies based on frequency and amplitude data. This approach is carried out mainly to locate musical instruments and their relations inside the stereo image (the traditional audio virtual space), so a bidimensional map development was determined as a key part for finding spatial distribution patterns on different periods of stereo music masters -to be able to characterize timbral aesthetics from a measured perspective-. This article presents the concepts, methodology and the analysis performed, a well all their results. Hence, a new approach of musical sound sources conceptualization inside the stereo image is presented, where they are either spectral or dynamic component constellations. Additionally, this concept and approach could apply to any kind of sound sources inside a recorded signa
References
1. Chowning JM. The simulation of moving sound sources. Journal of the audio engineering society. 1971 Jan 1;19(1):2-6.
2. Bregman AS. Auditory scene analysis: Hearing in complex environments. MIT press. 1994
3. Rumsey F. Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scenebased paradigm. Journal of the Audio Engineering Society. 2002 Sep 15;50(9):651-66.
4. Lee H, Rumsey F. Level and time panning of phantom images for musical sources. Journal of the Audio Engineering Society. 2013 Dec 20;61(12):978-88.
5. Lee H, Johnson D, Mironovs M. An interactive and intelligent tool for microphone array design. In Audio Engineering Society Convention 143 2017 Oct 8. Audio Engineering Society.
6. Basso G. Análisis espectral: la transformada de Fourier en la música. Ediciones al Margen; 2001.
7. Peeters G, Giordano BL, Susini P, Misdariis N, McAdams S. The timbre toolbox: Extracting audio descriptors from musical signals. The Journal of the Acoustical Society of America. 2011 Nov 1;130(5):2902-16.
8. Makino S, editor. Audio source separation. Berlin, Germany: Springer; 2018 Mar 1.
9. Zwicker E, Fastl H. Psychoacoustics: Facts and models. Springer Science & Business Media; 2013 Mar 14.
10. Caetano M, Saitis C, Siedenburg K. Audio content descriptors of timbre. Timbre: Acoustics, perception, and cognition. 2019:297-333.
11. Miyara F. Acústica y sistemas de sonido. Universidad Nacional de Rosario; 2003.
12. Saitta C. El timbre como factor estructurante. Altura-timbre-espacio. Cuaderno de estudio. 2016;5.
13. Miyara F. Mediciones acústicas basadas en software. Springer International Publishing AG; 2017.
14. Anderson J, Basso G, Cetta P, Cura M, Di Liscia OP, Dow R, Fessel P, Kendall GS, Liut M, Malham D, Pampin J. Música y espacio: ciencia, tecnología y estética. Univ. Nacional de Quilmes Ed.; 2009.
15. McLuhan E, Zingrone F. Essential McLuhan. Routledge; 1997 Jun 5.
16. Kassier R, Brookes T, Rumsey F. A simplified scene-based paradigm for use in spatial audio listener training applications. In117th AES Convention 2004 (p. 18).
17. Rodríguez, L. E. Construcción de mapas sonoros sobre música realizada en estéreo. En “Investigaciones sobre audio espacial y estética del arte sonoro” p. 7 – 46 Wolkowicz Editores
18. Rodríguez, L.E. Fuentes musicales como constelaciones de componentes dentro del espacio virtual. En “Avances del Audio en Latinoamérica 2022”, 2023. Proceedings of the AES LAC 2022 Conference. Audio Engineering Society Argentina, Instituto Terciario TAMABA.
Published
Issue
Section
License
Copyright (c) 2024 Leandro Enrique Rodríguez (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.