Importance of detecting thyroid pathology associated with COVID
DOI:
https://doi.org/10.56294/piii2024331Keywords:
COVID-19, SARS-CoV-2, hormones, thyroiditis, hypothyroidism, hyperthyroidismAbstract
Background: COVID-19 (SARS-CoV-2) infection can cause the development of various pathologies, some of which affect the endocrine system. This article provides a narrative review of the association between COVID-19 and thyroid conditions, describing the epidemiology, pathophysiological aspects, clinical and laboratory manifestations, treatment and prognosis. Material and methods: The methodology of this work is based on the compilation of information from previous studies, scientific articles and postgraduate studies published in the database: Scielo, PubMed, Intramed, WHO, Ministry of Health of Argentina). Results: COVID-19 infection can affect thyroid function and cause thyroid-related symptoms such as neck pain, malaise, and thyroid dysfunction. Some studies have documented cases of subacute thyroiditis associated with COVID-19. The thyroid gland may be vulnerable to COVID-19 infection and thyroid hormones may influence the immune response against COVID-19. Conclusion: COVID-19 can activate the immune system and cause hyperactivity, sometimes leading to the new onset of autoimmune disorders. The severity of SARS-CoV-2 infection may be affected by the state of the thyroid gland before and during infection, but the dependencies are not fully understood. There is no evidence to suggest that hypothyroidism, hyperthyroidism, and autoimmune thyroid diseases have a direct impact on the severity of COVID-19. However, reduced serum free triiodothyronine levels can be used as an indicator of mortality in SARS- CoV-2-positive patients. Further evaluation is required to determine the relationship between subacute thyroiditis and COVID-19
References
Zaragoza-Martínez F. Panorama de la situación actual con respecto al coronavirus [Internet]. 2020. Disponible en: https://www.redalyc.org/journal/4577/457769376006/h tml/
Inzunza-Cervantes G. Para entender el SAR S-COV-2: un análisis de la pandemia actual [Internet]. 2020. Disponible en: https://www.redalyc.org/journal/4577/457769376007/h tml/
Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ [Internet]. 26 de marzo de 2020;m1091. Disponible en: https://doi.org/10.1136/bmj.m1091
Canals M. Conceptos para una buena toma de decisiones en la pandemia COVID-19 en Chile. Revista Chilena De Infectologia [Internet]. 1 de abril de 2020;37(2):170-2. Disponible en: https://doi.org/10.4067/s0716-10182020000200170 5.
Garg MK, Gopalakrishnan M, Yadav P, Misra S. Endocrine involvement in COVID-19: Mechanisms, clinical features, and implications for care. Indian Journal of Endocrinology and Metabolism [Internet]. 1 de enero de 2020;24(5):381. Disponible en: https://doi.org/10.4103/ijem.ijem_440_20
Scappaticcio L, Pitoia F, Esposito K, Piccardo A, Trimboli P. Impact of COVID-19 on the thyroid gland: An update. Reviews in Endocrine and Metabolic Disorders [Internet]. 25 de noviembre de 2020;22(4):803-15. Disponible en: https://doi.org/10.1007/s11154-020-09615-z
Desailloud R, Hober D. Viruses and thyroiditis: an update. Virology Journal [Internet]. 1 de enero de 2009;6(1):5. Disponible en: https://doi.org/10.1186/1743-422x-6-5 8. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-COV-2: a systematic review and meta- analysis. International Journal of Infectious Diseases [Internet]. 1 de mayo de 2020;94:91-5. Disponible en: https://doi.org/10.1016/j.ijid.2020.03.017
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus–Infected pneumonia in Wuhan, China. JAMA [Internet]. 17 de marzo de 2020;323(11):1061. Disponible en: https://doi.org/10.1001/jama.2020.1585
Gupta N, Agrawal S, Ish P, Mishra S, Gaind R, Usha G, et al. Clinical and epidemiologic profile of the initial COVID-19 patients at a tertiary care centre in India. Monaldi archives for chest disease [Internet]. 10 de abril de 2020;90(1). Disponible en: https://doi.org/10.4081/monaldi.2020.1294
Henry BM, De Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clinical Chemistry and Laboratory Medicine [Internet]. 10 de abril de 2020;58(7):1021-8. Disponible en: https://doi.org/10.1515/cclm-2020-0369
Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ [Internet]. 26 de marzo de 2020;m1091. Disponible en: https://doi.org/10.1136/bmj.m1091
Wei W. Evaluation and observation of serum THD parathyroid hormone in patients with severe acute respiratory syndrome [Internet]. 2003. Disponible en: http://www.zgflzz.cn/EN/abstract/abstract12354.shtml
Ding Y, He L, Zhang Q, Huang Z, Che X, Hou JL, et al. Organ distribution of Severe Acute respiratory Syndrome(SARS) Associated coronavirus(SARS-COV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology [Internet]. 7 de mayo de 2004;203(2):622-30. Disponible en: https://doi.org/10.1002/path.1560
Wei L, Sun S, Xu C, Zhang J, Xu Y, Zhu H, et al. Pathology of the thyroid in severe acute respiratory syndrome. Human Pathology [Internet]. 1 de enero de 2007;38(1):95-102. Disponible en: https://doi.org/10.1016/j.humpath.2006.06.011
Wei L, Sun S, Zhang JZhangJ, Zhu H, Xu Y, MaQ Q, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS)This paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal’s usual peer review process. Biochemistry and Cell Biology [Internet]. 1 de agosto de 2010;88(4):723-30. Disponible en: https://doi.org/10.1139/o10-022
Wang W, Su X, Ding Y, Fan W, Zhou W, Su J, et al. Thyroid function abnormalities in COVID-19 patients. Frontiers in Endocrinology [Internet]. 19 de febrero de 2021;11. Disponible en: https://doi.org/10.3389/fendo.2020.623792
Leow MK, Kwek DSK, Ng A, Ong KCG, Kaw G, Lee LS. Hypocortisolism in survivors of Severe acute respiratory syndrome (SARS). Clinical Endocrinology [Internet]. 5 de julio de 2005;63(2):197-202. Disponible en: https://doi.org/10.1111/j.1365-2265.2005.02325.x
Chrousos GP, Kaltsas G. Post-SARS sickness Syndrome manifestations and endocrinopathy: how, why, and so what?*. Clinical Endocrinology [Internet]. 3 de septiembre de 2005;63(4):363-5. Disponible en: https://doi.org/10.1111/j.1365-2265.2005.02361.x
Gamma G. Tiroides e infección por COVID-19 | Grupo Gamma [Internet]. Grupo Gamma. 2022. Disponible en: https://www.grupogamma.com/tiroides- e-infeccion-por-covid-19/
Correa VA, Del Pino Cabello S, Nilo F, Cerda J. Tiroiditis subaguda asociada a COVID-19: revisión narrativa. ARS medica [Internet]. 26 de mayo de ;48(2):51-5. Disponible en: https://doi.org/10.11565/arsmed.v48i2.1930
Paz-Ibarra J. Glándula tiroides, ¿otra víctima de la COVID-19? Reporte de caso. Revista mexicana de endocrinología, metabolismo y nutrición [Internet]. 10 de agosto de 2021;8(3). Disponible en: https://doi.org/10.24875/rme.20000087
Alanís-Naranjo JM, Vega-Nava CT, De Lourdes Alanís-Naranjo M, Bañuelos-Almada EA. Coma mixedematoso asociado a infección por SARS-COV-2. Medicina crítica [Internet]. 1 de enero de 2022;36(2):116-20. Disponible en: https://doi.org/10.35366/104875
Alanís-Naranjo JM, Vega-Nava CT, Alanís- Naranjo M de L, Bañuelos-Almada EA. Coma mixedematoso asociado a infección por SARS-CoV-2. Medicina Crítica [Internet]. 2022 [citado el 18 de diciembre de 2023];36(2):116–20. Disponible en: http://www.scielo.org.mx/scielo.php?pid=S2448-&script=sci_arttext
Guelpa P. Una nueva investigación descubre que el COVID-19 puede causar cáncer, Alzheimer y disfunción tiroidea [Internet]. World Socialist Web Site. [citado el 18 de diciembre de 2023]. Disponible en: https://www.wsws.org/es/articles/2023/07/01/09c2- j01.htmlde la Higuera López-Frías M, Perdomo CM,
Galofré JC. Tiroiditis subaguda tras infección por COVID- 19. Rev Clin Esp [Internet]. 2021 [citado el 18 de diciembre de 2023];221(6):370–2. Disponible en: https://www.revclinesp.es/es-tiroiditis-subaguda-tras- infeccion-por-articulo-S0014256521000503
Murugan, AK; Alzahrani, A.S. El SARS-CoV-2 desempeña un papel fundamental en la inducción del hipertiroidismo de la enfermedad de Graves. Endocrino 2021, 73, 243–254.
Clarke, S.; Abbara, A.; Dhillo, W.S. Un impacto de COVID-19 en el sistema endocrino: una minirevisión. Endocrinología 2022, 163, bqab203.
Murugan, AK; Alzahrani, A.S. SARS-CoV-2: papel emergente en la patogénesis de diversas enfermedades de la tiroides. J. Inflamación. Res. 2021, 14, 6191–6221 31. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17): e38. doi: 10.1056/NEJMc2007575.
Abu-Rumeileh S, Abdelhak A, Foschi M, Tumani H, Otto M. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-daté systematic review of 73 cases. J Neurol. 2021;268(4):1133-70. doi: 10.1007/s00415-020- 10124-x.
Tang KT, Hsu BC, Chen DY. Manifestaciones autoinmunes y reumáticas asociadas con COVID-19 en adultos: una revisión sistemática actualizada. inmunol frontal. 2021: 645013. doi: 10.3389/fimmu.2021.645013. 33. Siracusa L, Cascio A, Giordano S, Medaglia AA, Restivo GA, Pirrone I, Saia GF, Collura F, Colomba C. Neurological complications in pediatric patients with SARS-CoV-2 infection: a systematic review of the literature. Ital J Pediatr. 2021;47(1):123. doi: 10.1186/s13052-021-01066-9.
Payus AO, Jeffree MS, Ohn MH, Tan HJ, Ibrahim A, Chia YK, Raymond AA. Immune-mediated neurological syndrome in SARS-CoV-2 infection: a review of literature on autoimmune encephalitis in COVID-19. Neurol Sci. 2022;43(3):1533-47. doi: 10.1007/s10072-021-05785-z.
Tutal E, Ozaras R, Leblebicioglu H. Systematic review of COVID-19 and autoimmune thyroiditis. Travel Med Infect Dis. 2022; 47:102314. doi: 10.1016/j.tmaid.2022.102314.
Nabizadeh F, Balabandian M, Sodeifian F, Rezaei N, Rostami MR, Naser Moghadasi A. Autoimmune encephalitis associated with COVID-19: A systematic review. Mult Scler Relat Disord. 2022; 62:103795. doi: 10.1016/j.msard.2022.103795.
Carrillo-Larco RM, Altez-Fernandez C, Ravaglia S, Vizcarra JA. COVID-19 and Guillain-Barre Syndrome: a systematic review of case reports. Wellcome Open Res. 2020; 5:107. doi: 10.12688/wellcomeopenres.15987.2.
Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-62. doi: 10.1097/BOR.0000000000000776.
Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, Alijotas-Reig J, Zinserling V, Semenova N, Amital H, Shoenfeld Y. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. doi: 10.1016/j.autrev.2020.102597.
Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New Onset of Autoimmune Diseases Following COVID- 19 Diagnosis. Cells. 2021;10(12): 3592.doi: 10.3390/cells10123592.
Ahmed S, Zimba O, Gasparyan AY. COVID-19 and the clinical course of rheumatic manifestations. Clin Rheumatol. 2021;40(7):2611-9. doi: 10.1007/s10067-021- 05691-x.
Murugan AK, Alzahrani AS. El SARS-CoV-2 juega un papel fundamental en la inducción del hipertiroidismo de la enfermedad de Graves. Endocrino. 2021; 73 (2): 243-54. doi: 10.1007/s12020-021-02770-6.
Talotta R, Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J Clin Cases.;8(17):3621-44. doi: 10.12998/wjcc. v8. i17.3621.
Makhluf H, Madany H. Infección por SARS-CoV-2 y síndrome de Guillain-Barré. Patógenos. 2021; 10 (8): 936. doi: 10.3390/pathogens10080936. 45. Ruggeri RM, Campennì A, Deandreis D, Siracusa M, Tozzoli R, Petranović Ovčariček P, Giovanella L. Trastornos tiroideos inmunoinflamatorios relacionados con el SARS- COV-2: hechos y perspectivas. Experto Rev Clin Immunol. 2021; 17 (7): 737-59. doi: 10.1080/1744666X.2021.1932467.34.
Sohrabpour, S.; Heidari, F.; Karimi, E.; Ansari, R.; Tajdini, A.; Heidari, F. Tiroiditis subaguda en pacientes con COVID-19. Euros. Tiroides J. 2021, 9, 321–323.
Bahçecioğlu, A.B.; Karahan, ZC; Aydoğan, BI; Kalkan, IA; Azap, A.; Erdoğan, M.F. Tiroiditis subaguda durante la pandemia de COVID-19: un estudio prospectivo. J. Endocrinol. Investigaciones. 2022, 45, 865–874
Pirola, I.; Gandossi, E.; Rotondi, M.; Marini, F.; Cristiano, A.; Chiovato, L.; Castellano, M.; Ferlín, A.; Cappelli, C. Incidencia de tiroiditis de De Quervain durante la pandemia de COVID-19 en un área muy afectada por la infección por Sars-CoV-2. Endocrino 2021, 74, 215–218.
Seyed Resuli, A.; Bezgal, M. Tiroiditis subaguda en pacientes con COVID-19. Oído Nariz Garganta J. 2022, 101, 501–505.
Caron, P. Trastornos de la tiroides e infección por SARS- CoV-2: del mecanismo fisiopatológico al tratamiento del paciente. Ann. Endocrinol. 2020, 81, 507–510.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Moisés Castro Nascimento Machado, Dr.Gerardo Laube (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.