Metabolic syndrome and neuroprotection
DOI:
https://doi.org/10.56294/piii2024341Keywords:
metabolic syndrome, neuroprotection, oxidative stress, brain, hypoxiaAbstract
Introduction. Over the years, the prevalence of metabolic syndrome has increased dramatically in developing countries as a major by-product of industrialization. Many factors, such as the consumption of hypercaloric diets and sedentary lifestyles, favor the spread of this disorder. Undoubtedly, the massive and still growing incidence of metabolic syndrome makes this epidemic a major public health problem. Metabolic syndrome is also a neurological and psychiatric risk factor. In this paper, an exploratory literature review on the subject will be performed.
In this paper, we survey the information as to what is known about the metabolic syndrome beyond its classical association with cardiovascular disease and type 2 diabetes mellitus, since the metabolic syndrome also represents a risk factor for nervous tissue and threatens neuronal function. First, we present some essential concepts of the pathophysiology of metabolic syndrome. Second, we explore some neuroprotective approaches in metabolic syndrome related to cerebral hypoxia.
Objectives. To update, review in an exploratory manner, and synthesize the literature concerning the neurological impact of metabolic syndrome, beyond its classical association with cardiovascular disease and type 2 diabetes mellitus. Define and review essential concepts of the pathophysiology of metabolic syndrome. To explore neuropreventive and neuroprotective strategies in metabolic syndrome related to therapeutic cerebral hypoxia.
Material and methods. An exploratory survey of scientific literature from January 1989-November 2022 was carried out. Selection/inclusion criteria: scientific publications containing exploratory data and information on metabolic syndrome and neurological comorbidity and possible neurotherapeutic approaches.
Pathophysiology. The metabolic pathways characteristically impaired in metabolic syndrome lead to hyperglycemia, insulin resistance, inflammation and hypoxia, all closely related to a generalized prooxidative state. Oxidative stress is well known to cause destruction of cellular structures and tissue architecture. Altered redox homeostasis and oxidative stress alter the macromolecular matrix of nuclear genetic material, lipids and proteins, which in turn disrupts biochemical pathways necessary for normal cellular function.
Neuroprotection. Different neuroprotective strategies involving lifestyle changes, medications aimed at mitigating the cardinal symptoms of metabolic syndrome, and treatments aimed at reducing oxidative stress are discussed. It is well known that routine physical exercise, particularly aerobic activity, and a complete and balanced diet are key factors in preventing metabolic syndrome. However, pharmacological control of the metabolic syndrome as a whole and related hypertension, dyslipidemia and endothelial injury contribute to the improvement of neuronal health.
Conclusion. The development of metabolic syndrome presents as a risk factor for the development and/or exacerbation of neurological alterations. Therapeutic strategies include multidisciplinary approaches aimed at addressing, in a concerted manner, different pathways involved in its pathophysiology
References
Abdallah HM, El-Bassossy HM, Mohamed GA, El-Halawany AM, Alshali KZ, Banjar ZM. Phenolics from Garcinia mangostana alleviate exaggerated vasoconstriction in metabolic syndrome through direct vasodilatation and nitric oxide generation. BMC Complement Altern Med. 2016 Sep 13;16(1):359. doi: 10.1186/s12906-016-1340-5. PMID: 27618982; PMCID: PMC5020522. DOI: https://doi.org/10.1186/s12906-016-1340-5
Ahrén B. Gut peptides and type 2 diabetes mellitus treatment. Current Diabetes Reports 2003; 3(5), 365–372. doi:10.1007/s11892-003-0079-9. DOI: https://doi.org/10.1007/s11892-003-0079-9
Alkhalaf A, Kleefstra N, Groenier KH, Bilo HJ, Gans RO, Heeringa P, Scheijen JL, Schalkwijk CG, Navis GJ, Bakker SJ. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy. PLoS One. 2012;7(7):e40427. DOI: https://doi.org/10.1371/journal.pone.0040427
doi: 10.1371/journal.pone.0040427. Epub 2012 Jul 6. PMID: 22792314; PMCID: PMC3391239.
Alkhulaifi F, Darkoh C. Meal Timing, Meal Frequency and Metabolic Syndrome. Nutrients. 2022 Apr 21;14(9):1719. doi: 10.3390/nu14091719. PMID: 35565686; PMCID: PMC9102985. DOI: https://doi.org/10.3390/nu14091719
Al-Sulaiti H, Diboun I, Agha MV, Mohamed FFS, Atkin S, Dömling AS, Elrayess MA, Mazloum NA. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med. 2019 Oct 22;17(1):348. doi: 10.1186/s12967-019-2096-8. PMID: 31640727; PMCID: PMC6805293. DOI: https://doi.org/10.1186/s12967-019-2096-8
Alvarez-Nölting R, Arnal E, Barcia JM, et al. Protection by DHA of early hippocampal changes in diabetes: possible role of CREB and NF-kB. Neurochemical Research. 2012; 37: 105–115. DOI: https://doi.org/10.1007/s11064-011-0588-x
Ametov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: The Sydney trial. Diabetes Care. 2003; 26: 770–776. DOI: https://doi.org/10.2337/diacare.26.3.770
Aoqui C, Chmielewski S, Scherer E, et al. Microvascular dysfunction in the course of metabolic syndrome induced by high-fat diet. Cardiovasc Diabetol. 2014; 13:31. DOI: https://doi.org/10.1186/1475-2840-13-31
Arnal E, Miranda M, Barcia J, Bosch-Morell F, Romero FJ. Lutein and docosahexaenoic acid prevent cortex lipid peroxidation in streptozotocin-induced diabetic rat cerebral cortex.
Neuroscience. 2010 Mar 10;166(1):271-8. doi: 10.1016/j.neuroscience.2009.12.028. Epub 2009 Dec 28. PMID: 20036322. DOI: https://doi.org/10.1016/j.neuroscience.2009.12.028
Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet.
; 376: 1670–81.
Balakumar P, Rohilla A, Krishan P, et al. The multifaceted therapeutic potential of benfotiamine.
Pharmacological Research. 2010; 61: 482–488. DOI: https://doi.org/10.1016/j.phrs.2010.02.008
Baluchnejadmojarad T, Roghani M. Chronic oral epigallocatechin-gallate alleviates streptozotocininduced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iranian Journal of Pharmaceutical Research. 2012; 11: 1243–1253.
Banerjee S, Ghosh S, Mandal A, Ghosh N, Sil PC. ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol. 2020 Jul;94(7):2293-2317. doi: 10.1007/s00204-020-02801-7. Epub 2020 Jun 10. PMID: 32524152. DOI: https://doi.org/10.1007/s00204-020-02801-7
Bayarsaikhan E, Bayarsaikhan D, Lee J, et al. Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics. International Journal of Nanomedicine. 2015; 10 Spec Iss: 281-292. DOI: https://doi.org/10.2147/IJN.S95077
Baydas G, Donder E, Kiliboz M, et al. Neuroprotection by α-lipoic acid in streptozotocin-induced diabetes. Biochemistry. 2004; 69: 1001–1005. DOI: https://doi.org/10.1023/B:BIRY.0000043542.39691.95
Belfiore A, Frasca F, Pandini G, et al. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews. 2009; 30: 586– 623. DOI: https://doi.org/10.1210/er.2008-0047
Bhat AH, Dara KB, Aneesa S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy. 2015; 74: DOI: https://doi.org/10.1016/j.biopha.2015.07.025
–110.
Biessels GJ, Van der Heide LP, Kamal A, et al. Ageing and diabetes: implications for brain function. European Journal of Pharmacology. 2002; 441:1-14. DOI: https://doi.org/10.1016/S0014-2999(02)01486-3
Bilen O, Wenger NK. Hypertension management in older adults. F1000Res. 2020 Aug 19; 9:F1000 Faculty Rev-1003. doi: 10.12688/f1000research.20323.1. PMID: 32850119; PMCID: PMC7438964. DOI: https://doi.org/10.12688/f1000research.20323.1
Binesh Marvasti T, Adeli K. Pharmacological management of metabolic syndrome and its lipid complications. DARU Journal of Pharmaceutical Sciences. 2010; 18:146-154.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative Stress and Antioxidant Defense. The World Allergy Organization journal. 2012; 5:9-19. DOI: https://doi.org/10.1097/WOX.0b013e3182439613
Blagosklonny MV. TOR-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists. Cell Death & Disease. 2013; 4: e964 DOI: https://doi.org/10.1038/cddis.2013.506
Bönhof GJ, Sipola G, Strom A, et al. BOND study: a randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open. 2022;12(2): e057142. Published 2022 Feb 3. doi:10.1136/bmjopen-2021-057142. DOI: https://doi.org/10.1136/bmjopen-2021-057142
Bril V, Buchanan RA. Aldose reductase inhibition by AS-3201 in sural nerve from patients with diabetic sensorimotor polyneuropathy. Diabetes Care. 2004; 27: 2369–2375. DOI: https://doi.org/10.2337/diacare.27.10.2369
Bril V, Hirose T, Tomioka TS, et al. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care. 2009; 32: 1256–1260. DOI: https://doi.org/10.2337/dc08-2110
Cai D, Liu T. Inflammatory cause of metabolic syndrome via brain stress and NF- κB. Aging. 2012; 2: 98–115. DOI: https://doi.org/10.18632/aging.100431
Cai D. NFkappaB-mediated metabolic inflammation in peripheral tissues versus central nervous system. Cell Cycle. 2009; 8: 2542–2548. DOI: https://doi.org/10.4161/cc.8.16.9386
Casellini CM, Vinik AI. Recent advances in the treatment of diabetic neuropathy. Current Opinion in Endocrinology and Diabetes. 2006; 13(2): 147–153.
Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients. 2020 Sep 29;12(10):2983. doi: 10.3390/nu12102983. PMID: 33003472; PMCID: PMC7600579. DOI: https://doi.org/10.3390/nu12102983
Chaplin A, Carpéné C, Mercader J. Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients. 2018 Nov 3;10(11):1651. doi: 10.3390/nu10111651. PMID: 30400297; PMCID: PMC6266067. DOI: https://doi.org/10.3390/nu10111651
Chattopadhyay M, Mata M, Fink DJ. Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy. Journal of Neuroscience. 2008; 28: 6652–6658. DOI: https://doi.org/10.1523/JNEUROSCI.5530-07.2008
Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology and Metabolism. 2010; 21: 589–598. DOI: https://doi.org/10.1016/j.tem.2010.06.005
Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM. 2004; 97: 537–548. DOI: https://doi.org/10.1093/qjmed/hch089
Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell. 2014 Apr 24;54(2):281-8. doi: 10.1016/j.molcel.2014.03.030. PMID: 24766892; PMCID: PMC4048989. DOI: https://doi.org/10.1016/j.molcel.2014.03.030
Chui A, Zhang Q, Dai Q, Shi SH. Oxidative stress regulates progenitor behavior and cortical neurogenesis. Development. 2020 Mar 11;147(5): dev184150. doi: 10.1242/dev.184150. PMID: 32041791; PMCID: PMC7075051. DOI: https://doi.org/10.1242/dev.184150
Cui XP, Li BY, Gao HQ, et al. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. Journal of Nutritional Science and Vitaminology. 2008; 54: 321–328. DOI: https://doi.org/10.3177/jnsv.54.321
Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signalling: the PERK/Nrf2 signalling pathway. International Journal of Biochemistry and Cell Biology. 2006; 38: 317–332. DOI: https://doi.org/10.1016/j.biocel.2005.09.018
Czernichow S, Greenfield JR, Galan P, et al. Macrovascular and microvascular dysfunction in the metabolic syndrome. Hypertens Res Official J Jpn Soc Hypertens. 2010; 33: 293–297. DOI: https://doi.org/10.1038/hr.2009.228
De Silva TM and Miller AA. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front. Pharmacol. 2016; 7:61. DOI: https://doi.org/10.3389/fphar.2016.00061
Di Majo D, Sardo P, Giglia G, Di Liberto V, Zummo FP, Zizzo MG, Caldara GF, Rappa F, Intili G, van Dijk RM, Gallo D, Ferraro G, Gambino G. Correlation of Metabolic Syndrome with Redox Homeostasis Biomarkers: Evidence from High-Fat Diet Model in Wistar Rats. Antioxidants (Basel). 2022 Dec 30;12(1):89. doi: 10.3390/antiox12010089. PMID: 36670955; PMCID: PMC9854509. DOI: https://doi.org/10.3390/antiox12010089
Ding K, Wang H, Wu Y, Zhang L, Xu J, Li T, Ding Y, Zhu L, He J. Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. J Surg Res. 2015 Mar;194(1):239-47. doi: DOI: https://doi.org/10.1016/j.jss.2014.09.026
1016/j.jss.2014.09.026. Epub 2014 Oct 12. PMID: 25438952. DOI: https://doi.org/10.1088/1475-7516/2014/12/026
Du X, Edelstein D, Brownlee M. Oral benfotiamine plus α-lipoic acid normalises complicationcausing pathways in type 1 diabetes. Diabetologia. 2008; 51: 1930–1932. DOI: https://doi.org/10.1007/s00125-008-1100-2
Edwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy: mechanisms to management. Pharmacology and Therapeutics. 2008; 120: 1–34. DOI: https://doi.org/10.1016/j.pharmthera.2008.05.005
Efthymiou D, Zekakos DX, Papatriantafyllou E, Ziagkas E, Petrelis AN, Vassilopoulou E. Gait Alterations in the Prediction of Metabolic Syndrome in Patients With Schizophrenia: A Pilot Study
With PODOSmart ® Insoles. Front Psychiatry. 2022 Jan 27;13:756600. doi: 10.3389/fpsyt.2022.756600. PMID: 35153872; PMCID: PMC8829465 DOI: https://doi.org/10.3389/fpsyt.2022.756600
Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Metabolic Syndrome and Neuroprotection. Front Neurosci. 2018 Apr 20; 12:196. doi: DOI: https://doi.org/10.3389/fnins.2018.00196
3389/fnins.2018.00196. PMID: 29731703; PMCID: PMC5919958.
Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, Assi HI. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022 Jan 12;23(2):786. doi: 10.3390/ijms23020786. PMID: 35054972; PMCID: PMC8775991. DOI: https://doi.org/10.3390/ijms23020786
Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends in Endocrinology and Metabolism. 2012; 23: 142–153. DOI: https://doi.org/10.1016/j.tem.2011.12.008
Galassetti P. Inflammation and oxidative stress in obesity, metabolic syndrome, and diabetes. Exp Diabetes Res. 2012;2012:943706. doi: 10.1155/2012/943706. Epub 2012 Dec 24. PMID: 23319940; PMCID: PMC3540748. DOI: https://doi.org/10.1155/2012/943706
Georgakouli K, Siamata F, Draganidis D, Tsimeas P, Papanikolaou K, Batrakoulis A, Gatsas A, Poulios A, Syrou N, Deli CK, Fatouros IG, Jamurtas AZ. The Effects of Greek Orthodox Christian Fasting during Holy Week on Body Composition and Cardiometabolic Parameters in Overweight Adults. Diseases. 2022 Dec 5;10(4):120. doi: 10.3390/diseases10040120. PMID: 36547206; PMCID: PMC9777691. DOI: https://doi.org/10.3390/diseases10040120
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinology. 2012; 4: 259-270. DOI: https://doi.org/10.4161/derm.22028
Gorelick PB, Scuteri A, Black SE, et al. Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart
Association/American Stroke Association. Stroke; a journal of cerebral circulation. 2011; 42: 2672-2713. DOI: https://doi.org/10.1161/STR.0b013e3182299496
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J. Neuroinflammation. 2011; 8:26. DOI: https://doi.org/10.1186/1742-2094-8-26
Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004; 53: S110–S118. DOI: https://doi.org/10.2337/diabetes.53.2007.S110
Greenstein AS, Khavandi K, Withers SB, et al. Local Inflammation and Hypoxia Abolish the Protective Anticontractile Properties of Perivascular Fat in Obese Patients. Circulation. 2009; 119: 1661-1670. DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.821181
Grillo CA, Piroli GG, Rosell DR, et al. Region-specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience. 2003; 121: 133–140. DOI: https://doi.org/10.1016/S0306-4522(03)00343-9
Guglielmotto M, Aragno M, Autelli R, et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J. Neurochem. 2009; 108: 1045–1056. DOI: https://doi.org/10.1111/j.1471-4159.2008.05858.x
Han B. H., Zhou M. L., Johnson A. W., Singh I., Liao F., Vellimana A. K., et al. Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E881–E890. DOI: https://doi.org/10.1073/pnas.1414930112
Harper JA, Dickinson K, Brand MD. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Reviews 2001; 2: 255–265. DOI: https://doi.org/10.1046/j.1467-789X.2001.00043.x
Hashimoto M, Tanabe Y, Fujii Y, et al. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. Journal of Nutrition.
; 135: 549–555.
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative Medicine and Cellular Longevity 2013; 2013: Article ID 168039, 15 pp. DOI: https://doi.org/10.1155/2013/168039
Hotta N, Akanuma Y, Kawamori R, et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care. 2006; 29: 1538–1544. DOI: https://doi.org/10.2337/dc05-2370
Hotta N, Sakamoto N, Shigeta Y, et al. Clinical investigation of epalrestat, aldose reductase inhibitor, on diabetic neuropathy in Japan: a multicenter study. Journal of Diabetes and its Complications. 1996; 10 168–172. DOI: https://doi.org/10.1016/1056-8727(96)00113-4
Hotta N, Toyota T, Matsuoka K, et al. SNK-860 diabetic neuropathy study group: clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care. 2001; 24: 1776– 1782. DOI: https://doi.org/10.2337/diacare.24.10.1776
International Diabetes Federation. The IDF consensus worldwide definition of the METABOLIC SYNDROME, 2006 (http://www.idf.org/e-library/consensus-statements/60-idfconsensusworldwide-definitionof-the-metabolic-syndrome).
Jha MK, Morrison BM. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp Neurol. 2018 Nov;309:23-31. doi: 10.1016/j.expneurol.2018.07.009. Epub 2018 Jul 22. PMID: 30044944; PMCID: PMC6156776.. DOI: https://doi.org/10.1016/j.expneurol.2018.07.009
Jones DP, Sies H. The Redox Code. Antioxid Redox Signal. 2015 Sep 20;23(9):734-46. doi: 10.1089/ars.2015.6247. Epub 2015 Jun 1. PMID: 25891126; PMCID: PMC4580308. DOI: https://doi.org/10.1089/ars.2015.6247
Jones NR, McCormack T, Constanti M, McManus RJ. Diagnosis and management of hypertension in adults: NICE guideline update 2019. Br J Gen Pract. 2020 Jan 30;70(691):90-91. doi: 10.3399/bjgp20X708053. Erratum in: Br J Gen Pract. 2020 Feb 27;70(692):111. PMID: DOI: https://doi.org/10.3399/bjgp20X708053
; PMCID: PMC7018407.
Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: Time for a clinical trial? Sci Transl Med. 2019 Jan 23;11(476): eaar4289. doi: 10.1126/scitranslmed.aar4289. PMID: 30674654; PMCID: PMC6762017. DOI: https://doi.org/10.1126/scitranslmed.aar4289
Kanagasabai T, Alkhalaqi K, Churilla JR, Ardern CI. The Association Between Metabolic Syndrome and Serum Concentrations of Micronutrients, Inflammation, and Oxidative Stress Outside of the Clinical Reference Ranges: A Cross-Sectional Study. Metab Syndr Relat Disord. 2019 Feb;17(1):29-36. doi: 10.1089/met.2018.0080. Epub 2018 Oct 27. PMID: 30372368. DOI: https://doi.org/10.1089/met.2018.0080
Kaneto H, Fujii J, Myint T, et al. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochemical Journal. 1996; 320: 855-863. DOI: https://doi.org/10.1042/bj3200855
Kaneto H, Kajimoto Y, Fujitani Y, et al. Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in beta-cell dysfunction. Diabetologia. 1999; 42: 1093–1097. DOI: https://doi.org/10.1007/s001250051276
Kaur J. A Comprehensive Review on Metabolic Syndrome. Cardiology Research and Practice. 2014; 2014:943162. DOI: https://doi.org/10.1155/2014/943162
Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World Journal of Gastroenterology. 2009; 15:41374142. DOI: https://doi.org/10.3748/wjg.15.4137
Kawai T, Takei I, Tokui M, et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of Nεcarboxymethyl lysine. Journal of Diabetes and Its Complications. 2010; 24: 424–432. DOI: https://doi.org/10.1016/j.jdiacomp.2008.10.005
Kendall D, Kim D, Maggs D. Incretin mimetics and dipeptidyl peptidase-IV inhibitors: a review of emerging therapies for type 2 diabetes. Diabetes Technology & Therapeutics. 2006; 8: 385-396 DOI: https://doi.org/10.1089/dia.2006.8.385
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Experimental & Molecular Medicine. 2015; 47: e149. DOI: https://doi.org/10.1038/emm.2015.3
Kim J, Kim M, Shin Y, Cho JH, Lee D, Kim Y. Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study. Nutrients. 2022 Dec 13;14(24):5298. doi: 10.3390/nu14245298. PMID: 36558457; PMCID: PMC9784032. DOI: https://doi.org/10.3390/nu14245298
Kitada M, Ogura Y, Monno I, Koya D. Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Front Endocrinol (Lausanne). 2019 Mar 27; 10:187. doi: 10.3389/fendo.2019.00187. PMID: 30972029; PMCID: PMC6445872. DOI: https://doi.org/10.3389/fendo.2019.00187
Klarenbach SW, McAlister FA, Johansen H, Tu K, Hazel M, Walker R, Zarnke KB, Campbell NR; Canadian Hypertension Education Program. Identification of factors driving differences in cost effectiveness of first-line pharmacological therapy for uncomplicated hypertension. Can J Cardiol. 2010 May;26(5): e158-63. doi: 10.1016/s0828-282x(10)70383-4. PMID: 20485695; PMCID: PMC2886561. DOI: https://doi.org/10.1016/S0828-282X(10)70383-4
Korivi M, Liu BR. Novel and Practical Approaches to Manage Diet-induced Metabolic Disorders: Part-I. Curr Pharm Des. 2020; 26(39):4953-4954. doi: 10.2174/138161282639201110165712. DOI: https://doi.org/10.2174/138161282639201110165712
PMID: 33213310.
Lam TKT, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nature Neuroscience.
; 8: 579–584.
Launer LJ. Diabetes and brain aging: epidemiologic evidence. Curr Diab Rep. 2005 Feb;5(1):59-
doi: 10.1007/s11892-005-0069-1. PMID: 15663919. DOI: https://doi.org/10.1007/s11892-005-0069-1
Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends in Pharmacological Sciences. 2013; 34: 313–319. DOI: https://doi.org/10.1016/j.tips.2013.03.007
Loh NY, Noordam R, Christodoulides C. Telomere length and metabolic syndrome traits: A Mendelian randomisation study. Aging Cell. 2021 Aug;20(8):e13445. doi: 10.1111/acel.13445. Epub 2021 Jul 27. PMID: 34312982; PMCID: PMC8373272. DOI: https://doi.org/10.1111/acel.13445
Loop, T., & Pahl, H. L. Activators and Target Genes of Rel/NF-кB Transcription Factors. Nuclear Factor кB, 2003; 1-48. doi:10.1007/978-94-010-0163-2_1 DOI: https://doi.org/10.1007/978-94-010-0163-2_1
Lopez-Vilaret KM, Cantero JL, Fernandez-Alvarez M, Calero M, Calero O, Lindín M, Zurrón M, Díaz F, Atienza M. Impaired glucose metabolism reduces the neuroprotective action of adipocytokines in cognitively normal older adults with insulin resistance. Aging (Albany NY). 2021 Nov 3;13(21):23936-23952. doi: 10.18632/aging.203668. Epub 2021 Nov 3. PMID: 34731089; PMCID: PMC8610113. DOI: https://doi.org/10.18632/aging.203668
Lu M, Sarruf DA, Talukdar S, Sharma S, Li P, Bandyopadhyay G, Nalbandian S, Fan W, Gayen JR, Mahata SK, Webster NJ, Schwartz MW, Olefsky JM. Brain PPAR-γ promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat Med. 2011 May;17(5):618-22. doi: 10.1038/nm.2332. Epub 2011 May 1. PMID: 21532596; PMCID: PMC3380629. DOI: https://doi.org/10.1038/nm.2332
Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. Journal of Clinical Investigation. 2011; 121: 2111–2117. DOI: https://doi.org/10.1172/JCI57132
Maher P, Dargusch R, Ehren JL, et al. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE. 2011; 6(6): Article ID e21226. DOI: https://doi.org/10.1371/journal.pone.0021226
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Bulotta R, Muscoli C, Mollace V. From Metabolic Syndrome to Neurological Diseases: Role of Autophagy. Front Cell Dev Biol. 2021 Mar 19;9:651021. doi: 10.3389/fcell.2021.651021. PMID: 33816502; PMCID: PMC8017166. DOI: https://doi.org/10.3389/fcell.2021.651021
Makar TK, Rimpel-Lamhaouar K, Abraham DG, et al. Antioxidant defense systems in the brains of type II diabetic mice. Journal of Neurochemistry. 1995; 65: 287–291. DOI: https://doi.org/10.1046/j.1471-4159.1995.65010287.x
Mansouri E, Panahi M, Ghaffari MA, Ghorbani A. Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed J. 2011;15(3):100-6. PMID: 21987116; PMCID: PMC3639749.
Marchesi VT. Alzheimer's disease and CADASIL are heritable, adult-onset dementias that both involve damaged small blood vessels. Cell. Mol. Life Sci. 2013; 71: 949–955. DOI: https://doi.org/10.1007/s00018-013-1542-7
Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life. 2003 Apr-May;55(4-5):193-204. doi: 10.1080/1521654031000141231. PMID: 12880199. DOI: https://doi.org/10.1080/1521654031000141231
Mattson MP, Camandola S. NF-????????B in neuronal plasticity and neurodegenerative disorders. Journal of Clinical Investigation. 2001; 107: 247–254. DOI: https://doi.org/10.1172/JCI11916
Medzhitov R, Horng T. Transcriptional control of the inflammatory response, Nature Reviews Immunology. 2009; 9: 692–703. DOI: https://doi.org/10.1038/nri2634
Meier B, Radeke HH, Selle S, et al. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-????????. Biochemical Journal. 1989; 263: 539– 545. DOI: https://doi.org/10.1042/bj2630539
Meier J, Nauck M. Incretins and the development of type 2 diabetes. Current Diabetes Reports. 2006; 6: 194–201. DOI: https://doi.org/10.1007/s11892-006-0034-7
Meigs JB. Epidemiology of the metabolic syndrome, 2002. Am J Manag Care. 2002 Sep;8(11 Suppl): S283-92; quiz S293-6. PMID: 12240700.
Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiology & Behavior. 2007; 92: 263–271. DOI: https://doi.org/10.1016/j.physbeh.2007.05.021
Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013 Oct;36(10):587-97. doi: 10.1016/j.tins.2013.07.001. Epub 2013 Aug 20. PMID: 23968694; PMCID: PMC3900881. DOI: https://doi.org/10.1016/j.tins.2013.07.001
Milei J, Otero-Losada M, Llambí HG, et al. Chronic cola drinking induces metabolic and cardiac alterations in rats. World Journal of Cardiology. 2011; 3: 111-116. DOI: https://doi.org/10.4330/wjc.v3.i4.111
Miranda M, Muriach M, Almansa I, et al. CR-6 protects glutathione peroxidase activity in experimental diabetes. Free Radical Biology and Medicine. 2007; 43: 1494–1498. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.08.001
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signalling. Cell Research.
; 21: 103–115.
Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF. Caffeic Acid on Metabolic Syndrome: A Review. Molecules. 2021 Sep 9;26(18):5490. doi: 10.3390/molecules26185490. PMID: 34576959; PMCID: PMC8465857. DOI: https://doi.org/10.3390/molecules26185490
Muriach M, Bosch-Morell F, Alexander G, et al. Lutein effect on retina and hippocampus of diabetic mice. Free Radical Biology and Medicine. 2006; 41: 979–988. DOI: https://doi.org/10.1016/j.freeradbiomed.2006.06.023
Muriach M, Bosch-Morell F, Arnal E, Alexander G, Blomhoff R, Romero FJ. Lutein prevents the effect of high glucose levels on immune system cells in vivo and in vitro. J Physiol Biochem. 2008 Jun;64(2):149-57. doi: 10.1007/BF03168243. PMID: 19043985. DOI: https://doi.org/10.1007/BF03168243
Nagamatsu M, Nickander KK, Schmelzer JD, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 1995; 18: 1160–1167. DOI: https://doi.org/10.2337/diacare.18.8.1160
Nakamura J, Kato K, Hamada Y, et al. A protein kinase C-β-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes. 1999; 48: 2090–2095. DOI: https://doi.org/10.2337/diabetes.48.10.2090
Negre-Salvayre A, Coatrieux C, Ingueneau C, et al. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology. 2008; 153: 6–20. DOI: https://doi.org/10.1038/sj.bjp.0707395
Nguyen S, Banks WA, Rhea EM. Effects of Rapamycin on Insulin Brain Endothelial Cell Binding and Blood-Brain Barrier Transport. Med Sci (Basel). 2021 Aug 25;9(3):56. doi: 10.3390/medsci9030056. PMID: 34449653; PMCID: PMC8395935. DOI: https://doi.org/10.3390/medsci9030056
Nguyen, D. V., Shaw, L. C., & Grant, M. B. Inflammation in the pathogenesis of microvascular complications in diabetes. Frontiers in Endocrinology. 2012; 3, 170. DOI: https://doi.org/10.3389/fendo.2012.00170
Norcini M, Vivoli E, Galeotti N, et al. Supraspinal role of protein kinase C in oxaliplatin-induced neuropathy in rat. Pain. 2009; 146:141–147. DOI: https://doi.org/10.1016/j.pain.2009.07.017
Oates, P. Polyol pathway and diabetic peripheral neuropathy. International review of neurobiology 2002; 50. 325-92. 10.1016/S0074-7742(02)50082-9. DOI: https://doi.org/10.1016/S0074-7742(02)50082-9
Obadia N, Lessa MA, Daliry A, et al. Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia-reperfusion injury. BMC Neuroscience. 2017; 18:67. DOI: https://doi.org/10.1186/s12868-017-0384-x
Onikanni AS, Lawal B, Oyinloye BE, Mostafa-Hedeab G, Alorabi M, Cavalu S, Olusola AO, Wang CH, Batiha GE. Therapeutic efficacy of Clompanus pubescens leaves fractions via downregulation of neuronal cholinesterases/Na+-K+ATPase/IL-1 β, and improving the neurocognitive and antioxidants status of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2022 Apr;148:112730. doi: 10.1016/j.biopha.2022.112730. Epub 2022 Feb 17. PMID: 35183996. DOI: https://doi.org/10.1016/j.biopha.2022.112730
Orsini M, Nascimento OJM, Matta APC, et al. Revisiting the Term Neuroprotection in Chronic and Degenerative Diseases. Neurology International. 2016; 8(1):6311. DOI: https://doi.org/10.4081/ni.2016.6311
Otero-Losada M, Cao G, González J, et al. Functional and Morphological Changes in Endocrine Pancreas following Cola Drink Consumption in Rats. Ashida H, ed. PLoS ONE. 2015; 10: e0118700. DOI: https://doi.org/10.1371/journal.pone.0118700
Otero-Losada M, Cao G, Mc Loughlin S, et al. Rate of Atherosclerosis Progression in ApoE−/− Mice Long After Discontinuation of Cola Beverage Drinking. Gonzalez GE, ed. PLoS ONE. 2014; 9: e89838. DOI: https://doi.org/10.1371/journal.pone.0089838
Otero-Losada M, Gómez Llambí H, Ottaviano G, et al. Cardiorenal Involvement in Metabolic Syndrome Induced by Cola Drinking in Rats: Proinflammatory Cytokines and Impaired Antioxidative Protection. Mediators of Inflammation. 2016; 2016: 5613056. (a) DOI: https://doi.org/10.1155/2016/5613056
Otero-Losada M, González J, Müller A, et al. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats. Rakonczay Z, ed. PLoS ONE. 2016; 11: e0155630. DOI: https://doi.org/10.1371/journal.pone.0155630
(b)
Otero-Losada M, Vila S, Azzato F, Milei J. Antioxidants supplementation in elderly cardiovascular patients. Oxid Med Cell Longev. 2013; 2013:408260. doi: 10.1155/2013/408260. Epub 2013 Dec 29. PMID: 24489984; PMCID: PMC3899745. DOI: https://doi.org/10.1155/2013/408260
Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007 May;12(5):913-22. doi: 10.1007/s10495-007-0756-2. PMID: 17453160. DOI: https://doi.org/10.1007/s10495-007-0756-2
Ozemek C, Tiwari S, Sabbahi A, Carbone S, Lavie CJ. Impact of therapeutic lifestyle changes in resistant hypertension. Prog Cardiovasc Dis. 2020 Jan-Feb;63(1):4-9. doi: 10.1016/j.pcad.2019.11.012. Epub 2019 Nov 20. PMID: 31756356; PMCID: PMC7257910. DOI: https://doi.org/10.1016/j.pcad.2019.11.012
Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition. 2001; 17 888–895. DOI: https://doi.org/10.1016/S0899-9007(01)00658-X
Pang L, Lian X, Liu H, Zhang Y, Li Q, Cai Y, Ma H, Yu X. Understanding Diabetic Neuropathy: Focus on Oxidative Stress. Oxid Med Cell Longev. 2020 Jul 31; 2020:9524635. doi: DOI: https://doi.org/10.1155/2020/9524635
1155/2020/9524635. PMID: 32832011; PMCID: PMC7422494.
Parati G, Kjeldsen S, Coca A, Cushman WC, Wang J. Adherence to Single-Pill Versus FreeEquivalent Combination Therapy in Hypertension: A Systematic Review and Meta-Analysis. Hypertension. 2021 Feb; 77(2):692-705. doi: 10.1161/HYPERTENSIONAHA.120.15781. Epub 2021 Jan 4. PMID: 33390044. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.120.15781
Passos JF, Saretzki G, Ahmed S, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007; 5:e110. DOI: https://doi.org/10.1371/journal.pbio.0050110
Pérez-Torres I, Castrejón-Téllez V, Soto ME, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int J Mol Sci. 2021 Feb 11;22(4):1786. doi: 10.3390/ijms22041786. PMID: 33670130; PMCID: PMC7916866. DOI: https://doi.org/10.3390/ijms22041786
Phillips CM, Shivappa N, Hébert JR, Perry IJ. Dietary Inflammatory Index and Biomarkers of Lipoprotein Metabolism, Inflammation and Glucose Homeostasis in Adults. Nutrients. 2018 Aug 8;10(8):1033. doi: 10.3390/nu10081033. PMID: 30096775; PMCID: PMC6115860. DOI: https://doi.org/10.3390/nu10081033
Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The Physical Activity Guidelines for Americans. JAMA. 2018 Nov 20; 320(19):2020-2028. doi: 10.1001/jama.2018.14854. PMID: 30418471; PMCID: PMC9582631. DOI: https://doi.org/10.1001/jama.2018.14854
Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappa B. Nature Medicine. 2011; 17: 883– 887. DOI: https://doi.org/10.1038/nm.2372
Ramirez MA, Borja NL. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy. 2008; 28: 646–655. DOI: https://doi.org/10.1592/phco.28.5.646
Rask-Madsen C, Ronald Kahn C. Tissue-Specific Insulin Signaling, Metabolic Syndrome, and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012; 32:20522059. DOI: https://doi.org/10.1161/ATVBAHA.111.241919
Reagan LP, Magariños AM, Yee DK, et al. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Research. 2000; 862: 292–300. DOI: https://doi.org/10.1016/S0006-8993(00)02212-5
Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF. A mathematical model of glutathione metabolism. Theor Biol Med Model. 2008 Apr 28;5:8. doi: 10.1186/1742-4682-5-8. DOI: https://doi.org/10.1186/1742-4682-5-8
PMID: 18442411; PMCID: PMC2391141.
Reifsnyder PC, Flurkey K, Doty R, Calcutt NA, Koza RA, Harrison DE. Rapamycin/metformin cotreatment normalizes insulin sensitivity and reduces complications of metabolic syndrome in type 2 diabetic mice. Aging Cell. 2022 Sep;21(9):e13666. doi: 10.1111/acel.13666. Epub 2022 Aug 19. PMID: 35986566; PMCID: PMC9470898. DOI: https://doi.org/10.1111/acel.13666
Ren Z, Zhao A, Wang Y, Meng L, Szeto IM, Li T, Gong H, Tian Z, Zhang Y, Wang P. Association between Dietary Inflammatory Index, C-Reactive Protein and Metabolic Syndrome: A CrossSectional Study. Nutrients. 2018 Jun 27;10(7):831. doi: 10.3390/nu10070831. PMID: 29954070; PMCID: PMC6073906. DOI: https://doi.org/10.3390/nu10070831
Révész D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BW. Longitudinal Associations Between Metabolic Syndrome Components and Telomere Shortening. J Clin Endocrinol Metab. 2015; 100:3050-9. DOI: https://doi.org/10.1210/JC.2015-1995
Révész D, Verhoeven JE, Picard M, Lin J, Sidney S, Epel ES, Penninx BWJH, Puterman E. Associations Between Cellular Aging Markers and Metabolic Syndrome: Findings From the CARDIA Study. J Clin Endocrinol Metab. 2018 Jan 1;103(1):148-157. doi: 10.1210/jc.201701625. PMID: 29053810; PMCID: PMC5761498. DOI: https://doi.org/10.1210/jc.2017-01625
Roberts RA, Smith RA, Safe S, et al. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010; 276: 85–94. DOI: https://doi.org/10.1016/j.tox.2010.07.009
Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?. Pharmacology and Therapeutics. 2013; 140: 239–257. DOI: https://doi.org/10.1016/j.pharmthera.2013.07.004
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017 Aug;11(8):215-225. doi: 10.1177/1753944717711379. Epub 2017 Jun 22. PMID: 28639538; PMCID: PMC5933580.. DOI: https://doi.org/10.1177/1753944717711379
Rozycka A, Jagodzinski PP, Kozubski W, et al. Homocysteine Level and Mechanisms of Injury in
Parkinson's disease as related to MTHFR, MTR, and MTHFD1 genes polymorphisms and LDopa treatment. Curr. Genomics. 2013; 14: 534–542 DOI: https://doi.org/10.2174/1389202914666131210210559
Rusowicz J, Serweta A, Juszko K, Idzikowski W, Gajda R, Szczepańska-Gieracha J. Factors Associated with Undertaking Health-Promoting Activities by Older Women at High Risk of Metabolic Syndrome. Int J Environ Res Public Health. 2022 Nov 30;19(23):15957. doi: 10.3390/ijerph192315957. PMID: 36498030; PMCID: PMC9736211. DOI: https://doi.org/10.3390/ijerph192315957
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients. 2020 Aug 10;12(8):2393. doi: 10.3390/nu12082393. PMID: 32785059; PMCID: PMC7469047. DOI: https://doi.org/10.3390/nu12082393
Schemmel KE, Padiyara RS, D'Souza JJ. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. Journal of Diabetes and its Complications. 2010; 24: 354–360. DOI: https://doi.org/10.1016/j.jdiacomp.2009.07.005
Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. The Journal of Clinical Investigation. 2008; 118: 2992–3002. DOI: https://doi.org/10.1172/JCI34260
Schutte S, Esser D, Siebelink E, Michielsen CJR, Daanje M, Matualatupauw JC, Boshuizen HC, Mensink M, Afman LA; Wageningen Belly Fat Study team. Diverging metabolic effects of 2 energy-restricted diets differing in nutrient quality: a 12-week randomized controlled trial in subjects with abdominal obesity. Am J Clin Nutr. 2022 Jul 6;116(1):132-150. doi: 10.1093/ajcn/nqac025. PMID: 35102369; PMCID: PMC9257474. DOI: https://doi.org/10.1093/ajcn/nqac025
Shakher J, Stevens MJ. Update on the management of diabetic polyneuropathies. Diabetes, Metabolic Syndrome and Obesity. 2011; 4: 289–305. DOI: https://doi.org/10.2147/DMSO.S11324
Sharma S, Sharma N. Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Annals of Indian Academy of Neurology. 2008; 11: 231–235. DOI: https://doi.org/10.4103/0972-2327.44558
Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci. 2022 Jan 1;18(3):983-994. doi: 10.7150/ijbs.66871. PMID: 35173531; PMCID: PMC8771831. DOI: https://doi.org/10.7150/ijbs.66871
Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nature Medicine. 2009; 15: 373–374. DOI: https://doi.org/10.1038/nm0409-373
Shukla et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. Journal of Neuroinflammation 2017; 14:21.
Shukla V, Shakya AK, Perez-Pinzon MA, et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. Journal of Neuroinflammation. 2017; 14: 21. DOI: https://doi.org/10.1186/s12974-016-0774-5
Siegel AB, Zhu AX. Metabolic Syndrome and Hepatocellular Carcinoma: Two Growing Epidemics with a Potential Link. Cancer. 2009; 115:5651-5661. DOI: https://doi.org/10.1002/cncr.24687
Sizar O, Khare S, Jamil RT, et al. Statin Medications. [Updated 2022 Nov 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430940/?report=classic
Smith DK, Lennon RP, Carlsgaard PB. Managing Hypertension Using Combination Therapy. Am Fam Physician. 2020 Mar 15;101(6):341-349. PMID: 32163253.
Sneller MH, de Boer N, Everaars S, Schuurmans M, Guloksuz S, Cahn W, Luykx JJ. Clinical, Biochemical and Genetic Variables Associated With Metabolic Syndrome in Patients With Schizophrenia Spectrum Disorders Using Second-Generation Antipsychotics: A Systematic Review. Front Psychiatry. 2021 Mar 29;12:625935. doi: 10.3389/fpsyt.2021.625935. PMID: 33868046; PMCID: PMC8044798. DOI: https://doi.org/10.3389/fpsyt.2021.625935
Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 2018 May 18;293(20):7522-7530. doi: 10.1074/jbc.TM117.000259. Epub 2017 Nov 30. DOI: https://doi.org/10.1074/jbc.TM117.000259
PMID: 29191830; PMCID: PMC5961061.
Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. The FEBS Letters.
; 582: 2–9.
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal. 2017 Mar 20;26(9):445-461. doi: 10.1089/ars.2016.6756. Epub 2016 Jul 14. PMID: 27302002. DOI: https://doi.org/10.1089/ars.2016.6756
Spychalowicz A, Wilk G, ´Sliwa T, et al. Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. 2012; 13: 2456–2466. DOI: https://doi.org/10.2174/1389201011208062456
Staels B, Dallongeville J, Auwerx J, et al. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation. 1998; 98: 2088-2093. DOI: https://doi.org/10.1161/01.CIR.98.19.2088
Stirban A, Negrean M, Stratmann B, et al. Adiponectin decreases postprandially following a heatprocessed meal in individuals with type 2 diabetes: an effect prevented by benfotiamine and cooking method. Diabetes Care. 2007; 30: 2514–2516. DOI: https://doi.org/10.2337/dc07-0302
Stone NJ, Bilek S, Rosenbaum S. Recent National Cholesterol Education Program Adult Treatment Panel III update: adjustments and options. Am J Cardiol. 2005 Aug 22;96(4A):53E-59E. doi: 10.1016/j.amjcard.2005.06.006. PMID: 16098845. DOI: https://doi.org/10.1016/j.amjcard.2005.06.006
Suresh Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism. 1993; 402: 1435–1439. DOI: https://doi.org/10.1016/0026-0495(93)90195-T
Tahara EB, Navarete FD, Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med. 2009 May 1;46(9):1283-
doi: 10.1016/j.freeradbiomed.2009.02.008. Epub 2009 Feb 23. PMID: 19245829. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.02.008
Tankova T, Cherninkova S, Koev D. Treatment for diabetic mononeuropathy with α-lipoic acid. International Journal of Clinical Practice. 2005; 59: 645–650. DOI: https://doi.org/10.1111/j.1742-1241.2005.00452.x
Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys. 2003 Nov 1;419(1):31-40. doi: 10.1016/j.abb.2003.08.013. DOI: https://doi.org/10.1016/j.abb.2003.08.013
PMID: 14568006.
Tonkin A, Byrnes A. Treatment of dyslipidemia. F1000 Prime Reports. 2014; 6:17. DOI: https://doi.org/10.12703/P6-17
Tóth F, Cseh EK, Vécsei L. Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci. 2021 Jan 2;22(1):403. doi: 10.3390/ijms22010403. PMID: DOI: https://doi.org/10.3390/ijms22010403
; PMCID: PMC7795784.
Urios P, Grigorova-Borsos AM, Sternberg M. Aspirin inhibits the formation of pentosidine, a crosslinking advanced glycation end product, in collagen. Diabetes Res Clin Pract. 2007 Aug;77(2):337-40. doi: 10.1016/j.diabres.2006.12.024. Epub 2007 Mar 26. PMID: 17383766. DOI: https://doi.org/10.1016/j.diabres.2006.12.024
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, GarciaAlloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS. 2022 Nov 7;19(1):88. doi: 10.1186/s12987-022-00380-6. PMID: 36345028; PMCID: PMC9639294. DOI: https://doi.org/10.1186/s12987-022-00380-6
Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Annals of the New York Academy of Sciences. 2002; 959: 368–383. DOI: https://doi.org/10.1111/j.1749-6632.2002.tb02108.x
Vinik AI, Bril V, Kempler P, et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C β-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebocontrolled, double-blind clinical trial. Clinical Therapeutics. 2005; 27: 1164–1180. DOI: https://doi.org/10.1016/j.clinthera.2005.08.001
Wang GG, Lu XH, Li W, et al. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine. 2011; 2011: Article ID 323171, 7 pp. DOI: https://doi.org/10.1155/2011/323171
Wang J, Chen GJ. Mitochondria as a therapeutic target in Alzheimer's disease. Genes Dis. 2016 Jun 16;3(3):220-227. doi: 10.1016/j.gendis.2016.05.001. PMID: 30258891; PMCID: PMC6150105. DOI: https://doi.org/10.1016/j.gendis.2016.05.001
WHO mid-term programmatic and financial report for 2016–2017 including audited financial statements for 2016 (A70/40) (http://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_40en.pdf?ua=1).
World Health Organization, The top 10 causes of death (Fact sheet) Updated January 2017 http://www.who.int/mediacentre/factsheets/fs310/en/
Xu C, Hou B, He P, Ma P, Yang X, Yang X, Zhang L, Qiang G, Li W, Du G. Neuroprotective Effect of Salvianolic Acid A against Diabetic Peripheral Neuropathy through Modulation of Nrf2. Oxid Med Cell Longev. 2020 Feb 27; 2020:6431459. doi: 10.1155/2020/6431459. PMID: 32184918; PMCID: PMC7063195. DOI: https://doi.org/10.1155/2020/6431459
Xu Q, Li X, Kotecha SA, et al. Insulin as an in vivo growth factor. Experimental Neurology. 2004; 188(1): 43–51. DOI: https://doi.org/10.1016/j.expneurol.2004.03.008
Yagihashi S, Yamagishi SI, Wada RI, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain. 2001; 124: 2448–2458. DOI: https://doi.org/10.1093/brain/124.12.2448
Yan H, Guo Y, Zhang J, et al. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Molecular Vision. 2008; 14: 2282–2291.
Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuationinduced damage to neurons and α-lipoic acid treatment. BMC Neurosci. 2020 Sep 17;21(1):38. doi: 10.1186/s12868-020-00588-y. PMID: 32943002; PMCID: PMC7499848. DOI: https://doi.org/10.1186/s12868-020-00588-y
Yoshitomi R, Yamamoto M, Kumazoe M, Fujimura Y, Yonekura M, Shimamoto Y, Nakasone A, Kondo S, Hattori H, Haseda A, Nishihira J, Tachibana H. The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: a randomized placebo-controlled clinical trial. Sci Rep. 2021 Sep 24;11(1):19067. doi: 10.1038/s41598-021-98612-6. PMID: 34561541; PMCID: PMC8463579. DOI: https://doi.org/10.1038/s41598-021-98612-6
Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, Salem N Jr, Stedman M; MIDAS Investigators. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010 Nov;6(6):456-64. doi: 10.1016/j.jalz.2010.01.013. PMID: 20434961. DOI: https://doi.org/10.1016/j.jalz.2010.01.013
Zhang PN, Zhou MQ, Guo J, Zheng HJ, Tang J, Zhang C, Liu YN, Liu WJ, Wang YX. Mitochondrial Dysfunction and Diabetic Nephropathy: Nontraditional Therapeutic Opportunities. J Diabetes Res. 2021 Dec 9; 2021:1010268. doi: 10.1155/2021/1010268. PMID: 34926696; PMCID: PMC8677373. DOI: https://doi.org/10.1155/2021/1010268
Zhang X, Xu L, He D, et al. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. BioMed Research International. 2013; 2013: Article ID 924327, 9 pages. DOI: https://doi.org/10.1155/2013/924327
Zhang X, Zhang G, Zhang H, et al. Hypothalamic IKKbeta /NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008; 135: 61–73. DOI: https://doi.org/10.1016/j.cell.2008.07.043
Zhang, Xiaohong & Zhu, Xuezhen & Bi, Xiaoyang & Huang, Jiguang & Zhou, Lijuan. (2022). The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. International journal of molecular sciences. 23. 10.3390/ijms23147793. DOI: https://doi.org/10.3390/ijms23147793
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019 Jul;44(1):3-15. doi: 10.3892/ijmm.2019.4188. Epub 2019 May 8. PMID: 31115493; PMCID: PMC6559295.
Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology 2001; 177: 125–134. DOI: https://doi.org/10.1016/S0303-7207(01)00455-5
Zhong J, Gong Q, Mima A. Inflammatory Regulation in Diabetes and Metabolic Dysfunction. J Diabetes Res. 2017;2017:5165268. doi: 10.1155/2017/5165268. Epub 2017 Mar 15. PMID: 28396875; PMCID: PMC5371208. DOI: https://doi.org/10.1155/2017/5165268
Ziegler D, Low PA, Litchy WJ, et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011; 34: 2054– 2060. DOI: https://doi.org/10.2337/dc11-0503
Zlokovic BV. New therapeutic targets in the neurovascular pathway in Alzheimer’s disease.
Neurotherapeutics. 2008; 5: 409-414. DOI: https://doi.org/10.1016/j.nurt.2008.05.011
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Richard Pacheco, Matilde Otero-Losada (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.
