Evaluation of serum transferrin microheterogeneity for the diagnosis of congenital N-glycosylation defects
DOI:
https://doi.org/10.56294/piii2025374Keywords:
Transferrin, Biomarker, Diagnosis, Congenital Disorders of GlycosylationAbstract
Introduction: transferrin is a glycoprotein produced in the liver, whose function is to transport iron to the tissues. It has been used mainly for the differential diagnosis of anemias as a biomarker. There are different isoforms due to the difference in their glycosylation patterns. This microheterogeneity has allowed its use as a biomarker for Congenital Disorders of Glycosylation; genetic diseases as a result of mutations in genes that encode the enzymes of the post-translational mechanism of protein glycosylation.
Objective: to evaluate the microheterogeneity of serum transferrin for the diagnosis of Congenital Disorders of Glycosylation in Cuba
Methods: a descriptive and cross-sectional study was developed at the National Center for Medical Genetics in the period from 2016 to 2022. The analytical method used was the transferrin isoelectric focusing with immunofixation described by Van Eijik et al in 1983. Serum samples from 26 patients with multisystem clinical symptoms and suspicion of having a genetic disease without a definitive di-agnosis were processed
Results: the IEF with immunofixation used allowed us to determine the glycosylation pattern of serum Tf. An altered Tf glycosylation pattern was found in four samples, two of type I and two of type II.
Conclusions: the IEF method to evaluate Tf glycoforms allowed the positive diagnosis in four patients, thus demonstrating the presence of Congenital Disorders of Protein N-glycosylation in Cuba
References
1. Bogdańska A, Lipiński P, Szymańska-Rożek P, Jezela-Stanek A, Rokicki D, Socha P, et al. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: long-term follow-up. Orphanet J Rare Dis 2021;16:17. https://doi.org/10.1186/s13023-020-01657-5.
2. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, Snoeck L, Corbeel L, Eggermont E, et al. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syn-drome?: 90. Pediatr Res 1980;14:179-179. https://doi.org/10.1203/00006450-198002000-00117.
3. Piedade A, Francisco R, Jaeken J, Sarkhail P, Brasil S, Ferreira CR, et al. Epidemiology of con-genital disorders of glycosylation (CDG)—overview and perspectives. J Rare Dis 2022;1:3. https://doi.org/10.1007/s44162-022-00003-6.
4. Rosero Freire DA, López Altamirano JM. Prognostic efficacy of platelet/lymphocyte ratio and neutrophil/lymphocyte ratio in patients with gastric cancer. Salud, Ciencia y Tecnología 2023;3:232. https://doi.org/10.56294/saludcyt2023232.
5. Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021;9:715151. https://doi.org/10.3389/fped.2021.715151.
6. Francisco R, Marques-da-Silva D, Brasil S, Pascoal C, Dos Reis Ferreira V, Morava E, et al. The challenge of CDG diagnosis. Mol Genet Metab 2019;126:1-5. https://doi.org/10.1016/j.ymgme.2018.11.003.
7. Jeffrey PD, Bewley MC, MacGillivray RT, Mason AB, Woodworth RC, Baker EN. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 1998;37:13978-86. https://doi.org/10.1021/bi9812064.
8. Baker EN. Structure and Reactivity of Transferrins. Advances in Inorganic Chemistry, vol. 41, Elsevier; 1994, p. 389-463. https://doi.org/10.1016/S0898-8838(08)60176-2.
9. Prabavathy K, Nalini M. Deep Learning Enabled Whale Optimization Algorithm for Accurate Pre-diction of RA Disease. Salud, Ciencia y Tecnología - Serie de Conferencias 2024;3:652. https://doi.org/10.56294/sctconf2024652.
10. Messina A, Palmigiano A, Esposito F, Fiumara A, Bordugo A, Barone R, et al. HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases. Glycoconj J 2021;38:201-11. https://doi.org/10.1007/s10719-020-09947-7.
11. Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, et al. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet J Rare Dis 2023;18:329. https://doi.org/10.1186/s13023-023-02879-z.
12. Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Dis-orders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med 2020;22:268-79. https://doi.org/10.1038/s41436-019-0647-2.
13. van Eijk HG, van Noort WL, Dubelaar ML, van der Heul C. The microheterogeneity of human transferrins in biological fluids. Clin Chim Acta 1983;132:167-71. https://doi.org/10.1016/0009-8981(83)90244-9.
14. WMA - The World Medical Association-WMA Declaration of Helsinki – Ethical Principles for Medi-cal Research Involving Human Participants s. f. https://www.wma.net/policies-post/wma-declaration-of-helsinki/ (accedido 26 de noviembre de 2024).
15. de Jong G, van Eijk HG. Microheterogeneity of human serum transferrin: a biological phenome-non studied by isoelectric focusing in immobilized pH gradients. Electrophoresis 1988;9:589-98. https://doi.org/10.1002/elps.1150090921.
16. Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, et al. Revisiting the immuno-pathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024;15:1350101. https://doi.org/10.3389/fimmu.2024.1350101.
17. Pérez-Dueñas B, García-Cazorla A, Pineda M, Poo P, Campistol J, Cusí V, et al. Long-term evolu-tion of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Pae-diatr Neurol 2009;13:444-51. https://doi.org/10.1016/j.ejpn.2008.09.002.
18. Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, et al. International clinical guide-lines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diag-nosis, treatment and follow up. J Inherit Metab Dis 2019;42:5-28. https://doi.org/10.1002/jimd.12024.
19. Čechová A, Altassan R, Borgel D, Bruneel A, Correia J, Girard M, et al. Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosyl-ation. J Inherit Metab Dis 2020;43:671-93. https://doi.org/10.1002/jimd.12241.
20. Ferreira CR, Altassan R, Marques-Da-Silva D, Francisco R, Jaeken J, Morava E. Recognizable phenotypes in CDG. J Inherit Metab Dis 2018;41:541-53. https://doi.org/10.1007/s10545-018-0156-5.
Published
Issue
Section
License
Copyright (c) 2025 Tatiana Acosta Sánchez , Lilia Caridad Marín Padrón, Gretell Huertas Pérez, Anitery Travieso Téllez, Alina García García, Laritza Martínez Rey (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.